**Answer:**

(a^{3} – b^{3}) = (a – b)(a^{2} + b^{2} + ab)

Let us prove this by consider a = 5 and b= 3 then

(5^{3} – 3^{3}) = (5 – 3)(5^{2} + 3^{2} + 5 × 3)

LHS = (125 – 27)

**LHS = **98

RHS = (a – b)(a^{2} + b^{2} + ab)

RHS = (5 – 3)(5^{2} + 3^{2} + 5 × 3)

RHS = (2) X (25 + 9 + 5 × 3)

RHS = (2) X (34 + 15)

RHS = 2 X 49

**RHS = **98

∴ LHS = RHS

(a^{3} – b^{3}) = (a – b)(a^{2} + b^{2} + ab)

Hence Proved

**What is the importance of the a cube – b cube formula?**